8.12 Core–Mantle Interactions

B. A. Buffett, The University of Chicago, Chicago, IL, USA

© 2007 Elsevier B.V. All rights reserved.

8.12.1 Introduction

Two giant heat engines operate inside the Earth. One powers plate tectonics and accounts for most of the geological phenomena we observe at the surface. The other operates in the core, where it continually sustains the Earth’s magnetic field against persistent ohmic losses. These two heat engines are coupled, primarily through interactions at the boundary between the core and mantle. Transfer of heat, mass, momentum, and electric current across the boundary profoundly affects the dynamics and evolution of both regions on timescales ranging from days to hundreds of millions of years. On short timescales, we observe diurnal wobbles in the Earth’s rotation which are strongly affected by relative motion between the core and the mantle (e.g., Mathews and Shapiro, 1992). This and other types of mechanical interaction influence the flow in the core (e.g., Moffatt and Dillon, 1976) and contribute to variations in the length of day on decadal timescales (see Chapter 8.04). On longer timescales, we expect variations in both the magnitude and spatial distribution of heat flow across the boundary. The resulting thermal interactions influence the vigor and pattern of convection in the core, and may alter the frequency of reversals (Glatzmaier et al., 1999). Electromagnetic interactions are also possible, particularly if the lowermost mantle has a large electrical conductivity. Electric currents near the base of the mantle can generate both large- and small-scale magnetic fields, while the associated Lorentz force contributes to the mechanical interaction. More recent suggestions of chemical reactions between the core and mantle (Brandon and Walker, 2005) raise the intriguing but contentious suggestion that mass has been transferred between the two regions over geological time. In this chapter, we focus on the consequences of core–mantle interactions for processes in the core. We address a number of recent advances in our understanding of thermal, mechanical, electromagnetic, and chemical interactions, as they relate to the dynamics and evolution of the core. We also deal with the role of core–mantle interactions as a means of detecting deep-Earth processes at the surface.

8.12.2 Thermal Interactions

Heat flow across the core–mantle boundary (CMB) is a fundamental parameter for the evolution of the core. It controls the rate of cooling and solidification of the core, and determines the vigor of convection in the fluid outer core (see Chapter 8.02). Convection is driven by buoyancy from the boundaries of the outer core in response to cooling and inner-core growth. Chemical buoyancy arises through the exclusion of the light elements from the inner core (Braginsky, 1963), whereas thermal buoyancy is generated by latent heat release on solidification (Verhoogen, 1961) and by forming cold, dense fluid in the thermal boundary layer at the top of the core. Each of these buoyancy sources is paced by the CMB heat flow.

The magnitude of the CMB heat flow is dictated by the mantle. The large and relatively sluggish mantle imposes control over the loss of heat from the core. Estimates of the CMB heat flow are often obtained from inferences of the temperature jump across the thermal boundary layer on the mantle side of the interface (e.g., Buffett, 2002). Typical values of the heat flow are 6–12 TW, although our present state of knowledge is not sufficient to rule out higher or lower values. Such a broad range of values permits two distinct styles of
convection in the core (see Figure 1). One style occurs when the CMB heat flow exceeds the conduction of heat along the adiabatic gradient at the top of the core (denoted by Q_{ad}). Convection transports the superadiabatic part of heat flow through the core, creating a thermal boundary layer on the core side of the boundary. This provides a source of cold, dense fluid that drives convection from the top down into the core. The other regime occurs when the CMB heat flow is less than Q_{ad}. In this case, the mantle is unable to remove the heat carried by conduction down the adiabat. Excess heat accumulates at the top of the core (Gubbins et al., 1982) or is convectively mixed into the interior by chemical buoyancy (Loper, 1978). Either of these possibilities eliminates thermal buoyancy production at the top of the core, restricting the buoyancy production to the inner-core boundary region.

Representative values for $Q_{ad} = 5–6$ TW lie within a plausible range of values for the CMB heat flow. This implies that either style of convection in the core is possible. It is also possible that the style of convection has changed over time. High CMB heat flow is likely in the early Earth, and it may be essential to power the dynamo prior to the formation of the inner core. A switch to bottom-driven convection becomes possible as the Earth cools and the inner core grows. We might even expect the style of convection to switch intermittently between the two regimes if the current heat flow is sufficiently close to Q_{ad}. Fluctuations in mantle convection can transiently shift the CMB heat flow above or below Q_{ad}, altering the convective regime.

Evidence for fluctuations in mantle convection are found in geological observations of changes in the rate of plate motions. Bunge et al. (2003) have recently incorporated geological estimates of plate motions into three-dimensional models of mantle convection in order to assess the consequences of changes in plate-spreading rates. Interpretation of observations from the last 120 million years suggests that spreading rates have generally decreased over this time, perhaps by more than 20% (Xu et al., 2006; Lithgow-Bertelloni and Richards, 1998). While the magnitude of this is debated (Rowley, 2002), it is clear that changes in plate motion can cause thermal interactions with the core. Figure 2 shows the predicted change in heat flow at the surface and CMB when plate motions are varied in the calculation by Bunge et al. (2003). (The plate motions over the past 120 My are cyclically repeated to extend the record back in time. The primary goal is to repeat the calculation with different initial conditions.) High heat flow at the surface coincides with times of rapid plate spreading. Changes at the CMB are felt about 50–60 My later, once the subducted material begins to arrive at the base of the mantle. The amplitude of the variation in CMB heat flow is 1 TW, or about 20% of the time-averaged value.

Changes in the CMB heat flow alter the supply of thermal and chemical buoyancy at the boundaries of
A stratified layer at the top of the core can develop when the heat flow drops below \(Q_{\text{ad}} \) because the mantle can no longer keep pace with the heat supplied by conduction along the adiabat. Excess heat accumulates at the top of the core unless convection in the core can entrain warm fluid back into the interior. In the absence of entrainment, we expect a warm, stratified layer to grow in response to changes in densities inside and below the stratified layer \(\text{(Lister and Buffett, 1998)} \). Heat accumulates in the stratified layer, causing the warm fluid to encroach down into the underlying convective region. However, light elements from the inner-core boundary accumulate in the convective region, so the stratified layer gradually becomes heavier in term of composition. This interplay between the thermal and chemical buoyancy ultimately limits the growth of the stratified layer.

Figure 2 Heat flow at the surface, \(Q(t) \), and the CMB, \(Q_{\text{cmb}}(t) \), from a numerical convection model with imposed plate motions \(\text{(Bunge et al., 2003)} \). Plate motion histories over the past 120 My are cyclically repeated at earlier times to assess the response with different initial conditions. High heat flow at the surface coincides with times of faster than average plate spreading rates. Increases in heat flow at the CMB occur 50–60 My later.

Figure 3 Changes in the radius of a stratified layer in the core in response to variations in CMB heat flow. (a) The stratified layer vanishes when the CMB heat flow exceeds the adiabatic heat flow \(Q_{\text{ad}} \). Under these conditions, the radius of the stratified layer equals the radius of the core (e.g., 3480 km). The stratified layer reappears whenever the CMB heat flow drops below \(Q_{\text{ad}} \). (b) A persistent stratified layer is present when \(Q_{\text{ad}} = 6 \) TW, although the thickness of the layer varies with time. The arrows indicate the times when the heat flow at the surface is maximum.

maximum thickness. This time lag is set primarily by the thermal diffusion time for the stratified layer. We find a relatively thick stratified layer at 100–110 Ma, following a low CMB heat flow at 130 Ma. The low CMB heat flow (in this model) is a consequence of slow plate motions at the surface, 50–60 My earlier. The thickest layers are predicted to coincide with the time of maximum surface heat flow, although this result depends on the timescale for variations in the surface heat flow. The existence of a stratified layer in the core might be inferred from paleomagnetic observations of changes in the secular variation of the magnetic field, because a stable layer would filter magnetic fluctuations from the underlying
convective region. Distinctive features in the field may also develop in the stratified layer through interactions with convective motion in the underlying region (Zhang and Schubert, 2000). More dramatic changes in the structure and dynamics of the core occur if the change in CMB heat flow is more substantial. For example, Nimmo and Stevenson (2000) suggest that a transition from plate tectonics to stagnant lid convection on Mars is sufficient to suppress convection throughout the Martian core, causing the termination of the magnetic field.

Lateral variations in heat flow at the CMB also affect the dynamics of the core. Cold slabs at the base of the mantle are expected to increase the local heat flow by increasing the local temperature gradient at the boundary. This effect seems unavoidable because the low viscosity of the core liquid maintains a nearly constant temperature over the boundary. Small adiabatic variations in temperature over kilometer-scale topography produce temperature variations of roughly 1 K, but these variations are small compared with temperature anomalies of several hundred Kelvins or more in the mantle. Consequently, variations in heat flow over the CMB can be inferred from the thermal structure on the mantle side of the boundary. Numerical simulations (Zhang and Gubbins, 1993, 1996; Sarson et al., 1997) and experiments (Sumita and Olson, 1999, 2002) show that lateral variations in heat flow drive fluid motion in the core. In fact, several studies have sought to interpret core flows obtained from secular variation of the magnetic fields in terms of regional variations in heat flow (Bloxham and Gubbins, 1987; Kohler and Stevenson, 1990). Numerical simulations of convection with lateral variations in heat flow reveal a tendency to lock the pattern of convection to the pattern of heat flow at the boundary, although this typically occurs for a narrow range of parameter values. More commonly, the flow is highly time dependent. The source of the time dependence appears to be a consequence of switching the flow between the horizontal scale of the imposed boundary conditions and the natural scale of convection (Zhang and Gubbins, 1996; Sumita and Olson, 2002).

Similar conclusions are drawn from numerical geodynamo models (Sarson et al., 1997; Olson and Christensen, 2002; Bloxham, 2002). Nonhomogeneous boundary conditions in geodynamo models yield persistent structure in the time-averaged flow (Olson and Christensen, 2002; Bloxham, 2002), although there can be substantial variation about the average (Christensen and Olson, 2003; Bloxham, 2002). The spatial pattern of the flow is expressed in the structure of the magnetic field. Models that use seismic heterogeneity at the base of the mantle to infer the local heat flow have been successful in producing a magnetic field with persistent nondipole structure (see Figure 4), similar to that deduced from paleomagnetic observations over the past few million years (Gubbins and Kelly, 1993; Johnson and Constable, 1997, 1998). However, the persistent nondipole structure is not prominent in individual snapshots of the solution; it emerges only after averaging the time-dependent part of the field. So far, it has not been possible to use thermal interactions to explain stationary features in the historical field over the past 300 years (Bloxham, 2002).

![Figure 4](image-url) Lateral variations in Q_{cmb} induce flow near the top of the core and alter the time-averaged magnetic field from calculations of Olson and Christensen (2002). (a) Lateral variations in boundary heat flow are based on seismic models of velocity heterogeneity near the CMB. (b) Toroidal streamlines of steady flow below the CMB are due to imposed heat flow conditions. (c) Time-averaged radial magnetic field at CMB reveals nonzonal structure.
Spatial variations in heat flow may also have an important influence on magnetic reversals. The study of Glatzmaier et al. (1999) showed that different patterns of heat flow at the CMB dramatically alter the frequency of magnetic reversals. When the pattern of CMB heat flow is compatible with the natural pattern of convection in the outer core, there is a tendency to produce a stronger dipole field with less time dependence and fewer magnetic reversals. The opposite behavior is observed when the pattern of heat flow and the natural scale of convection are incompatible; in this case, much larger variations are observed in the field and reversals appear more frequently. Somewhat surprisingly, the most realistic behavior, in terms of time variations in the virtual geomagnetic pole (VGP), was obtained with uniform boundary conditions. Such a model cannot explain the persistent nondipole structure of the field, so it appears there are inconsistencies in our current understanding of thermal interactions. A related concern is the fact that dynamo models typically fail when the lateral variations in heat flow are comparable to the average (convective) heat flow (Olson and Christensen, 2002). Because a large part of the heat flow at the CMB is carried by conduction along the adiabat, the convective part of the average heat flow could be quite small (or even negative). Lateral variations in heat flow could easily exceed the average convective heat flow, which appears to doom the magnetic field in thermally driven dynamo models. It is not presently known if the dynamo models would still fail if convection was driven primarily by compositional buoyancy. Reconciling the behavior of the field with plausible thermal interactions remains an outstanding challenge.

Another consequence of thermal interactions involves the behavior of the field during a reversal. Compilations of VGPs from transition fields suggest that the VGPs are clustered into one of two preferred longitudes during a reversal (Laj et al., 1991; Clement, 1991). In fact, it is possible for different sites to record different paths for the same reversal because the VGP location is based on the assumption of a dipole field. Non-dipole (multipole) components of the field also contribute to the direction of the field at a given site, shifting the VGP location from the position of the actual dipole axis. Different reversal paths emerge from different sites when the multipole components become prominent relative to the dipole. Kutzner and Christensen (2004) investigate the question of preferred reversal paths using a geodynamo model with lateral variations in CMB heat flow. Part of the time-averaged magnetic field in this study included an equatorial dipole, which defines a preferred orientation in longitude. VGP paths from a large number of sites on the surface sense this orientation, causing a preferred path during reversals. However, the scatter in VGP directions due to multipole components means that the preferred direction emerges only when a large number of sites are averaged. The question of whether preferred reversal paths can be inferred from a small number of sites at the surface remains a contentious issue, both for the models and the paleomagnetic observations. Additional questions arise because the models are still very far from Earth-like conditions. On the other hand, the signatures of thermal core–mantle interactions should be embedded in the flow and field at the top of the core. Identifying these signatures in both observations and models should be an important part of future progress.

8.12.3 Electromagnetic Interactions

Electric currents are induced in the lower part of the mantle as a consequence of dynamo action in the liquid core. Several types of interactions between the core and mantle are possible. One involves the force on current-carrying material, which can transfer momentum between the core and the mantle. This mechanism is commonly proposed to explain variations in the length of day over periods of several decades. A second type of interaction causes a distortion of the magnetic field as it diffuses through the mantle toward the surface. The importance of both effects depends on the electrical conductivity of the lower mantle. Laboratory-based estimates for mantle silicates and oxides, extrapolated to lower-mantle conditions, typically yield conductivities of 10 S m\(^{-1}\) or less (Xu et al., 2000). Such low values are expected to yield relatively weak currents in the lower mantle and small electromagnetic core–mantle interactions. However, more substantial electromagnetic interactions are possible if the lowermost mantle is not composed entirely of silicates and oxides. Chemical reactions between the core and mantle have been proposed as a mechanism to incorporate iron alloys into the base of the mantle (Knittle and Jeanloz, 1989). The iron alloy may be a reaction product (Jeanloz, 1990) or a result of incorporating core material directly into the mantle (Poirier and LeMouel, 1992; Buffett et al., 2000; Petford et al., 2005; Kanda and Stevenson, 2006). More recent evidence
of a new high-pressure phase of MgSiO₃ (Murakami et al., 2004; Oganov and Ono, 2004) opens new possibilities for high conductivities in the lower mantle (Ono et al., 2006). Regions of low conductivity may also arise from changes in the partition of iron between the dominant mineral components due to a transition in the spin state of iron in ferropericlase (Mg₀.₈₃Fe₀.₁₇)O (Badro et al., 2003).

One of the earliest suggestions of electromagnetic core–mantle interaction was motivated by the observation of small fluctuations in the length of day over periods of several decades (Bullard et al., 1950; Rochester, 1962; Roden, 1963). Motion of the core relative to the mantle sweeps lines of magnetic field through the lower mantle, inducing a horizontal electric current. The resulting forces on the core and mantle act to oppose any relative motion. The axial component of the associated torque transfers angular momentum between the core and mantle. Stix and Roberts (1984) were the first to use detailed estimates of flow at the top of the core to determine the electromagnetic torque on the mantle. They predicted variations in the torque which were sufficient to explain the fluctuations in the length of day. However, these variations were superimposed on a steady torque, which had the undesirable effect of causing a steady change in the angular velocity of the core and the mantle. To avoid this effect, they proposed an additional (balancing) torque that arises when radial electric currents leak across the CMB. The existence of such a current is reasonable, although it cannot be constrained by surface observations. As a result, electromagnetic interactions provide a viable but unproven mechanism for explaining decadal variations in the length of day.

Holme (1998) revisited the question of electromagnetic core–mantle interactions by showing that the part of the core flow which contributes to the torque is not constrained by measurements of secular variation (also see Wicht and Jault, 1999). This means that the torque is a product of the assumptions used to resolve the nonuniqueness of the flow rather than by the data constraints. The strategy proposed by Holme (1998) was to determine the flow at the top of the core by fitting the observed secular variation subject to the condition that rearrangement of magnetic flux explains the length–of–day variations. (This calculation did not require any radial current across the CMB.) Plausible core flows were found to explain the variations in the length of day, provided the conductance of the lower mantle was roughly 10⁸ S. The necessary conductance could be obtained with a 100 km layer at the base of the mantle and an average conductivity of 10³ S m⁻¹, although other combinations of thickness and conductivity are possible.

A similar value for the conductance of the lower mantle was obtained from the study of the Earth’s nutation (Buffett, 1992). Periodic variations in the direction of the Earth’s rotation (nutations) are caused by the lunar and solar tides. The Earth’s response to tidal torques includes a differential rotation of the core relative to the mantle, which alters the observed motion at the surface. Electromagnetic interactions alter this response by introducing a restoring force that opposes the differential rotation. The associated dissipation due to Ohmic loss is detected as a phase lag in the response relative to that predicted for an elastic Earth model (e.g., Mathews and Shapiro, 1992). Comparison of theoretical predictions (Wahr, 1981; Mathews et al., 1991) and observations (Herring et al., 1991) reveals a large discrepancy in the annual nutation, which is particularly sensitive to relative motion between the core and the mantle. This discrepancy could be eliminated by including electromagnetic interactions, as long as the conductance of the lower mantle is 10⁸ S, comparable to the value required to explain length–of–day variations. However, there is one important distinction. Nutations involve nearly diurnal motion of the core relative to the mantle. (An annual nutation is defined by the period of the beat frequency between the nearly diurnal motion and exactly one cycle per day.) The associated skin depth for magnetic diffusion over diurnal periods limits electric currents to the immediate vicinity of the boundary, so the discrepancies in the nutations are most easily explained by high (10⁵–10⁶ S m⁻¹) conductivities in a relatively thin (10²–10³) layer. A variety of mechanisms have been examined to explain (or dispute) such a conducting layer at the base of the mantle (Knittle and Jeanloz, 1991; Poirier and LeMouel, 1992, Buffett et al., 2000, Petford et al., 2005, Kanda and Stevenson, 2006). While improvements in nutation theory (Mathews et al., 2002) and observations (Herring et al., 2002) continue to support the existence of a conducting layer, other sources of dissipation have also been proposed. The most likely alternative is viscous dissipation in the liquid core (Buffett, 1992; Mathews and Guo, 2005; Deleplace and Cardin, 2006), although this explanation requires a viscosity which is roughly 4 orders of magnitude larger than recent estimates (de Wijs et al., 1998; Zhang and Guo, 2000).
Another type of electromagnetic interaction arises when the electrical conductivity in the lower mantle varies laterally. Steady flow in the core sweeps the radial (poloidal) component of the magnetic field through the mantle, inducing local electric currents. In a uniform conductor, these currents produce a tangential (toroidal) component of the magnetic field. However, a heterogeneous distribution of conductivity channels current through the conducting regions. The added complexity in the current induces a poloidal field which can re-enforce the initial poloidal field. Busse and Wicht (1992) showed that self-sustaining dynamo action is possible in this case, even when the flow in the core is spatially uniform. In effect, the complexity of the conductivity structure replaces the need for complicated fluid motion in a uniform conductor. While the conditions required for self-sustaining dynamo action are unlikely to be realized in the Earth’s core, it is possible to induce a small-scale radial field with an amplitude as large as 0.1 mT (Buffett, 1996c). This mechanism can also contribute to the large-scale field at the surface by distorting the unseen toroidal field to produce an observable poloidal component (Koyama et al., 2001).

Electromagnetic interactions also accompany time variations in the amplitude of the magnetic field. The largest change in amplitude probably occurs during magnetic reversals. While the general structure of the field during a reversal is not well known, we do know that the axial part of the dipole field vanishes and reappears with the opposite polarity in as little as several thousand years (Clement, 2004). Rapid time variations in the axial dipole create large-scale electric fields in the lower mantle. When the distribution of electrical conductivity of the mantle is heterogeneous, the resulting currents generate a poloidal field (see Figure 5). The structure of the induced field depends on the spatial distribution of electrical conductivity. A large-scale pattern of electrical conductivity with a local conductance of 10^8 should produce an observable field during a magnetic reversal. Such a mechanism provides an attractive explanation for preferred reversal paths because the geographic location and structure of the induced field is fixed by the distribution of electrical conductivity in the lower mantle. Costin and Buffett (2004) explored this mechanism using a distribution of electrical conductivity that was based on estimates of topography on the CMB (dominantly a degree-2 pattern in spherical harmonics). The main part of the induced field had a nonzonal degree-3 pattern, which was superimposed on a decreasing axial dipole field to predict VGP paths. Preferred paths were caused by the nonzonal part of the field, although the actual location of the preferred paths depended on the location of the observing sites. Costin and Buffett (2004) used the location of sites in the sediment database of Clement (1991) to predict a clustering of reversal paths through the Americas and Asia (see Figure 6). This prediction was consistent with inferences drawn directly from the observations (Clement, 1991).

An interesting test of this prediction is afforded by the current rate of decrease in the dipole field, which is not too different from the average rate of decrease during a reversal (perhaps within a factor of 2 or 3). The induced field is both observable and consistent with historical observations of the field, although it is not currently possible to separate contributions from electromagnetic core–mantle interactions and the underlying variations that originate within the core. This ambiguity is a source of concern because the contribution of electromagnetic core–mantle interactions to the field at the surface can potentially complicate the way we interpret observations of secular variation in the magnetic field.
Mechanical interactions are commonly invoked in the transfer of momentum between the core and the mantle. Most attention has focused on mechanisms that account for the observed variation in the length of day over timescales of several decades. Lorentz forces due to electromagnetic interactions offer one possible mechanism, although several other types of mechanical interactions have also been proposed. One such mechanism is due to flow of the core over topography on the CMB (Hide, 1969). Pressure differences on the leading and trailing sides of bumps on the boundary result in a torque that transfers angular momentum. When seismic estimates of the CMB topography first appeared in the literature (Morelli and Dziewonski, 1987; Forte and Peltier, 1991), it became possible to estimate the pressure (or topographic) torque using models of flow in the core (Hide, 1989; Jault and LeMouel, 1989). Most models of core flow are constrained by assuming a geostrophic force balance in the tangential direction (see Chapter 8.04). Under this assumption, the flow field recovered from observations of secular variation can be converted to a pressure field. When that pressure field was integrated over the boundary with known topography, the resulting torque was too large by several orders of magnitude to explain the observed variation in length of day (Jault and LeMouel, 1990). A small shift in the position of the topography could greatly reduce the torque, leading to speculations that the pattern of flow was locked by the topography to keep the torque small. Alternatively, it was possible to make small changes to the flow which eliminated the pressure torque entirely, but did not substantially alter the fit to the secular variation observations (Kuang and Bloxham, 1993). These results demonstrate the sensitivity of the calculation to small errors in either the topography or the flow models.

More problematic is the consistency of calculating a pressure torque using flow models that assume a geostrophic force balance at the top of the core. Geostrophic flow represents a balance between the Coriolis force and pressure gradient. Such a flow can have no time variation because the presence of
accelerations implies a departure from geostrophic conditions. There can also be no net torque on the core (or the mantle) because a net torque also implies a change in momentum. Kuang and Bloxham (1997) used this result to show that the pressure torque due to a geostrophic flow must vanish. They did this by demonstrating that the torque associated with the Coriolis force is identically zero. The sum of the pressure and Coriolis torques must vanish if there is no change in momentum in a geostrophic flow, so it follows that the pressure torque is zero. Of course, it is possible that the flow at the top of the core is not geostrophic, so the pressure torque need not vanish. Jault and LeMouel (1999) argue that the geostrophic approximation would still provide a good approximation for the actual pressure field (and hence the pressure torque). However, it is doubtful that a reliable pressure field for mechanical coupling calculations can be recovered from the flow, given the sensitivity of the calculation to small errors.

Other estimates of the pressure torque have been obtained using models of idealized flow over boundary topography (e.g., Anufriev and Braginsky, 1975, 1977; Moffatt and Dillon, 1976). Pressure in the fluid is perturbed by the flow around the topography. The influence of this perturbation on the boundary topography produces the pressure torque. The amplitude of the pressure torque in these calculations varies as b^2, where b is the height of the topography. One factor of b arises because the perturbation depends on the height of the topography; the second factor of b arises because the integral over the surface for the pressure torque depends on the presence of topography. For boundary topography of a few kilometers at large spatial scales, the resulting pressure torque is probably too small to explain the observed variations in the length of day (e.g., Mound and Buffett, 2005). Similar conclusions have been obtained using numerical geodynamo models that include the influence of boundary topography (Kuang and Chao, 2001). An important aspect of the study by Kuang and Chao (2001) is that they avoid the use of idealized flow and make no assumptions about the structure of the magnetic field. The pressure at the boundary evolves in response to both the underlying convection and the presence of boundary topography. The fact that the pressure torque in these calculations is small would seem to resolve the question of pressure coupling.

Other consequences of fluid pressure on the CMB can be detected at the surface. For example, fluctuations in pressure produce observable changes in both gravity and surface topography (Fang et al., 1996; Dumberry and Bloxham, 2004; Greff-Lefftz et al., 2004). A typical pressure of 10^3 Pa changes on timescales of several decades as the flow evolves at the CMB. When the mantle responds elastically to the pressure change, the surface displacement can be a few millimeters and the change in the gravity field is within current limits of detection (Dumberry and Bloxham, 2004; Greff-Lefftz et al., 2004). Recent interest in this process is motivated by observations of decadal changes in the elliptical part of the gravity field (Cox and Chao, 2002). While it appears that pressure changes in the core are too small to explain the observations of Cox and Chao (2002), current advances in space geodetic observations hold the promise of making the somewhat smaller core processes observable at the Earth’s surface.

Gravitational interactions between the core and the mantle cause a different type of mechanical coupling. Convection in both regions creates and evolves density anomalies inside the Earth. Gravitational attraction of these density anomalies can result in a transfer of momentum (Jault and LeMouel, 1989; Rubincam, 2003). The distribution of density anomalies in the mantle can be inferred from seismic tomography models by assuming that variations in wave speed are due mainly to temperature (Dziewonski et al., 1977; Hager et al., 1985; Ricard and Vigny 1989). Unfortunately, a similar procedure is not feasible in the outer core, because the density anomalies are far too small to be detected seismically (Stevenson, 1987). An order of magnitude estimate for the density anomalies in the outer core suggests that gravitational interactions could be important (Jault and LeMouel, 1989). However, it is not presently possible to evaluate the torque without knowing the distribution of density anomalies in the outer core.

An alternative source of gravitational interaction occurs between density anomalies in the mantle and the inner core (Buffett, 1996a). The principle source of density heterogeneity in the inner core is caused by topography on the inner-core boundary, which can be estimated by assuming that the boundary tends to adjust over time toward an equipotential surface (see Chapter 8.10). (Density anomalies may also occur inside the inner core, but these are probably small because the inner core solidifies from the well-mixed outer core.) Density anomalies in the outer core are expected to be very small (e.g., $\delta \rho/\rho \approx 10^{-5}$), so the primary disturbance to equipotential surfaces in the core is probably caused by...
density anomalies in the mantle. This means that the distribution of density anomalies in the mantle determines the shape of the inner core (see Figure 7). Estimates of the gravity perturbations from dynamic geoid studies (Forte et al., 1994; Defraigne et al., 1996) suggest that the peak-to-peak topography on the inner-core boundary is about 100 m or less. When the inner core rotates through the gravitational field of the mantle, a strong gravitational force acts to restore the inner core to its equilibrium position. An equal and opposite force on the mantle is about 2 orders of magnitude larger than the gravitational attraction due density anomalies in the outer core (Buffett, 1996a), primarily because the density anomalies associated with inner-core topography are much larger (e.g., $\delta p/\rho \approx 10^{-4}$). These large gravitational forces provide a plausible explanation for the decadal variations in length of day. The mechanism relies on a combination of electromagnetic and gravitational torques (Buffett, 1996b). Motions in the fluid outer core are tightly coupled to the inner core by electromagnetic forces on account of the high electrical conductivity on either side of the inner-core boundary. The inner core rotates in response to the strong electromagnetic torque, which transfers momentum to the mantle through the action of gravitational torques on the inner core. Tests of this mechanism in numerical geodynamo models yield torques on the mantle with a typical amplitude of 2×10^{18} N m (Buffett and Glatzmaier, 2000), which is sufficient to explain the variations in length of day. It is also possible to explain the length-of-day variations when the fluid motions in the outer core are restricted to the form of torsional oscillations (Mound and Buffett, 2005). These oscillations are of interest because the typical period is compatible with the timescale for variations in length of day (Braginsky, 1970, 1984). An independent test for gravitational interactions would involve the search for a free mode of oscillation due to the gravitational restoring force between the inner core and the mantle. Mound and Buffett (2006) present evidence for a 6 year oscillation in the length of day, which they attribute to gravitational interactions. Corroborating evidence could potentially be sought in time variations of the gravity field (Buffett and Glatzmaier, 2000).

8.12.5 Chemical Interactions

It is generally assumed that the core has been chemically isolated from the mantle since the time of core formation. The initial composition of the core is established by a series of processes that separate liquid iron into large enough volumes to inhibit chemical equilibration with the rest of the Earth (e.g., Stevenson, 1990; Rubie et al., 2003). Subsequent transport of mass between liquid iron and silicates is assumed to be insignificant after the core forms. This conventional view is challenged by the studies of Knittle and Jeanloz (1989, 1991), which used diamond-anvil cell experiments to show that liquid iron reacts with silicates and oxides at high pressure and temperature. The reaction products are thought to include iron alloys, such as FeO and FeSi, and iron-depleted silicate minerals (Knittle and Jeanloz, 1989; Goarant et al., 1992). Mantle minerals in direct contact with the core liquid should quickly establish chemical equilibrium, because reactions at high temperature are expected to be fast and convective mixing in the core is relatively efficient (the convective overturn time is probably of the order of 10^6 years). On the other hand, convection in the mantle exposes fresh surfaces of unreacted material...
more slowly. Jeanloz (1990) suggests that chemical reactions and transport of light elements into the core could have occurred over most of the Earth’s history. Subduction of oxidized ocean crust may also drive reactions by continually altering chemical conditions at the base of the mantle (Walker, 2005). In either case, chemical reactions could alter the composition of the core by permitting a flux of mass between the mantle and the core.

Evidence for the core leaking back into the mantle is based on measurements of Os isotope ratios in some lavas associated with hot spots (Walker et al., 1995; Brandon et al., 1998). Enrichment in 186Os/188Os and 187Os/186Os relative to upper-mantle materials has been attributed to small additions of core material to the lower mantle. This core material is subsequently entrained in mantle plumes, where it contributes to lavas that are sampled at the surface (see Brandon et al. (2003) for a recent review). Only small amounts of core material are required to perturb the isotopic composition of the mantle because the concentration of Os in the core vastly exceeds that in the mantle, based on partitioning of Os between silicates and liquid metal. However, the observed enrichment in isotopic ratios require a source region with elevated ratios of Pt/Os and Re/Os in order to produce excess 186Os and 187Os through radioactive decay of 190Pt and 187Re. Given the long half-lives involved (e.g., 489 and 42 Ga), the elevated ratios of Pt/Os and Re/Os must be maintained for a very long time to produce the required isotopic enrichment.

Brandon et al. (1998) attribute the elevated ratios of Pt/Os and Re/Os in the liquid core to the growth of the inner core. The initial abundances of Pt, Re, and Os in the core should be close to the chondritic abundances because all of these elements are highly siderophile; most of the initial inventory enters the core with little fractionation. Solidification of the core removes more Os from the liquid core than either Re or Pt (Walker, 2000). This process increases Pt/Os and Re/Os ratios in the outer core above the chondritic ratios. Unfortunately, the current experimental estimates for the partitioning of Pt, Re, and Os between liquid and solid iron appear to require an old age for the inner core (Brandon et al., 2003), which is incompatible with models for the thermal history of the core (Labrosse et al., 2001; Buffett, 2002). A further complication has arisen with the recent measurement of tungsten isotopes in lavas that exhibit 186Os/188Os and 187Os/188Os enrichment (Schersten et al., 2004). So far, no evidence for a core signature has been found in the tungsten isotopes, although the debate continues (Brandon and Walker, 2005).

Despite the controversy over isotopic signals from the core, it is difficult to escape the conclusion that some form of chemical interaction is inevitable. Differences in redox state imply that the core and the mantle cannot be in bulk equilibrium (Walker, 2005). Even a local equilibrium between the core and mantle minerals adjacent to the boundary is liable to be perturbed as the core cools. Changes in temperature alter the solubility of dissolved components, while growth of the inner core continually fractionates light elements into the outer core. Eventually, the liquid core may become supersaturated in light elements, causing an immiscible liquid phase to form (Ito et al., 1995). Alternatively, the excess concentration of light elements may drive back reactions at the CMB, removing the excess light elements and precipitating mantle-like silicates (Buffett et al., 2000). Walker (2005) has also discussed the possibility of electrochemical reactions at the CMB (Kavner and Walker, 2006) and the consequences of chemical shifts on the mantle side of the boundary. There is no shortage of mechanisms that can cause chemical interactions between the core and the mantle, and there are good reasons for suspecting that many of these operate within the Earth. The challenge lies in quantifying their importance for the evolution and dynamics of the planet.

8.12.6 Conclusions

Interactions between the core and the mantle take many forms. Thermal interaction involves changes in the rate and spatial distribution of heat flow across the CMB. The resulting changes in the vigor and pattern of convection in the core can dramatically affect the geodynamo and produce observable signals in the magnetic field at the Earth’s surface. Electromagnetic interactions are the result of electric currents near the boundary. The consequences are entirely dependent on the electrical conductivity of the lower mantle. A conductance of 10^8 S for the lower mantle is sufficient to explain variations in the length of day and to contribute significantly to the induction of magnetic field inside the Earth. Mechanical interactions are most commonly attributed to the effects of fluid pressure acting on the CMB. While pressure torques are not thought to be the primary mechanism for transferring angular momentum between the core and the mantle, deformations
due to fluid pressure on the CMB can cause observable changes in gravity and surface displacement. A more viable explanation for the variations in length of day at decadal periods involves gravitational interactions, primarily between the inner core and the mantle. Better observations of these gravitational interactions may provide new insights into the nonhydrostatic distribution of mass in the mantle. Chemical interactions of some form appear to be likely, although the details are presently unknown. Advances in high-pressure and high-temperature experiments may soon begin to fill in these details and provide unexpected surprises in the chemical evolution of the core.

References

Anufriev AP and Braginsky SI (1977) Influence of irregularities of the boundary of the Earth’s core on fluid velocity and the magnetic field. II. Geomagnetism and Aeronomy 17: 78–82.

Core–Mantle Interactions

